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Abstract—As shown by the senior author, the proper formulation of free convection boundary-layer
theory depends on order of magnitude of the Eckert number defined as Ec = Hg/c,AT, the conventional
theory being valid in the limit Ec — 0. The present paper investigates the solutions of the laminar flat
plate problem, over the entire Ec-range, for the case in which similarity prevails. It is shown that for
Ec = O(1) the similar solutions are attainable for linearly varying wall temperature (in particular constant)
whereas in the limit for Ec - o0 any wall temperature distribution leads to similar solutions. Similar
profiles for Ec = O(1) depend on the Prandtl number and on the ratio (Ec/f’) where §' is the constant
wall temperature gradient. Similar profiles for Ec — oc are universal insofar as they do not depend on
any parameter. Universal profiles are given in closed form. Numerical solutions for Pr = 0.72 and several
values of (Ec/f') are presented and analysed in terms of velocity and temperature profiles, wall shear
stress and Nusselt number. In particular the paper shows that the results of conventional theory cannot
be used for §’ smaller than (0.05-0.1) Ec.

NOMENCLATURE

aj, dimensionless constants;
C, arbitrary constant;

Cps specific heat at constant pressure;

Ec. Eckert number (= Hg/c,AT);

Ec, differential Eckert number (= gdx/c,dT,);
e.f,g, dimensionless functions;

F,G, dimensionless functions:;

g, acceleration due to gravity;

Gr,  Grashof number (= gATH3/v*T):

H, plate height;

I1,,1,, scale factors;

M?,  dimensionless coefficient (= Hg/RT,);
Nu,  Nusselt number;

P, pressure;
Prandtl number;

R, gas constant;

Rayleigh number (= GrPr);

T, temperature;

temperature difference [ = T,,(0) - T,];
velocity components;

I scale factor;

cartesian coordinates;

W, dimensionless function.

Greek symbols

o, thermal diffusivity coefficient;

(&), dimensionless function;

s specific heat ratio;

o, dimensionless function;

& scale factor [ =(Ra)™'"*];

, scale factor [= (EcRa)™'*];

n, similarity variable [ = y*/d*(¢)];

0, dimensionless coefficient [ = AT/T,];

tThis paper was contributed by the authors for the Allan
Ede Memorial issue, Vol. 19, No. 10; but publication was
unfortunately delayed.
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A thermal conductivity coefficient;
U, dynamic viscosity coefficient;

v, kinematic viscosity coefficient;
¢, similarity variable;

P, density;

o, dimensionless function;

T, shear stress;

¢, dimensionless function;

v, stream function;

w, dimensionless constant.
Subscripts

a, ambient;

w, at the wall.
Superscripts

e, in the outer region;

*, dimensionless quantity;

dimensionless quantity for Ec » 1.

1. INTRODUCTION

MATHEMATICAL modeling and solution of laminar
free convection boundary layers are classical problems,
recently reviewed by Ede [1]. The great majority of
work is based on the Schmidt-Beckman [2] formu-
lation (herein referred to as “conventional formu-
lation™) according to which the non-dimensional flow
features depend only on the Prandtl (Pr) and Grashof
(Gr) (or Rayleigh Ra = GrPr) numbers. The conven-
tional formulation is rarely questioned even when
higher boundary-layer theories are developed [3]. Its
range of validity has never been properly identified
and, perhaps as a natural consequence, not enough
attention has been paid to the question of the appro-
priate modeling outside this range.

This question has been recently addressed to by the
senior author [4] for the particular case of the steady
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laminar frec-convection boundary layer due to a verti-
cal impermeable flat plate immersed in a perfect gas.
The study was based on a rigorous order of magnitude
analysis and on the concomitant application of the
matched asymptotic expansion technique. The results
shed a completely new light on free convection
boundary-layer problems. revealing the need for
“revisiting™ all of them and indicating the avenues
along which further theoretical and experimental work
should be done.

To put the present work in the proper perspective
some of the most relevant findings of the analysis
performed in [4) will be summarized.

Under the above mentioned restrictive hypotheses,
the frec convection problem exhibits five characteristic
speeds: the Torricellian speed ¥, = (Hg)' % the speeds
V, = v;H and V, = «/H related to diffusion of momen-
tum and energy, and the two “thermal” speeds
1, =(RT)'* and V; = (RAT)" ?. The steady flow field
thus depends, in general, upon four independent non-
dimensional parameters which can be formed with
these five characteristic speeds. Since for gases vix =
O(1) one such parameter, the Prandtl number
Pr =1V, V,.is of the order one and only the following
other three parameters may have arbitrary orders of
magnitude:

Vl VZ ATH’i
Rua = ‘-;/, L—‘ = q-r 5 Pr = GrPr
ll- /\ ’Z M“_
H Z2N & (D
v 2
.-\/12:—”,:"‘—;. {)—--T7=.-_
VPRI, v L

The first parameter is the classical Rayleigh number.
The choice of the other two is actually motivated by
their physical meanings. The parameter 0 is a non-
dimensional measure of the “driving force” and affects
directly the density field: for 6 « 1 the Boussinesq
approximation is applicable. The parameter M? is the
Newtonian Mach number referred to the Torricellian
speed and thus affects directly the pressure field. When
both 0« ] and M2 « 1 the proper formulation of a
boundary-layer theory still depends on the relative
order of magnitude of 0 and M? or, more precisely,
on the order of magnitude of the Eckert number
defined as
-1 M

Ec=1 g = Hg/c,AT,

where 7 is the specific heat ratio. The two key points
to be stressed are:

(1) The conventional boundary-layer formulation is
valid in the limit for Ec -0 and presupposes that
Ra » 1. The same condition Ra > | applies for Ec =
O(1). In the limit for Ec —»« the validity of a
boundary-layer theory depends no longer on the value
of the Rayleigh number, but, rather, on that of the
number:

2774
EcRa = g_H Pr.
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(2) The zeroth (and higher order) boundary-layer
equations have different forms in cach of the above
three cases: Ec —»0; Fc = O(1), Ec — ». The impli-
cations of this state of affairs are of utmost importance
as the following reasonings show.

Let all other problem data be constant and consider
what happens as AT — 0. As this implies that Ec — .,
deductions inferred from conventional boundary-Jayer
theory are erroneous. Thus, for example, it is not true
that at any given station the boundary layer thickens
indefinitely and that, consequently, the boundary-layer
approach should necessarily fail to be applicable below
a certain minimum value of AT.

The correct statements follow from point (1) above.
When the number EcRa is sufficiently large, a
boundary-layer theory is applicable throughout the Ec¢
range. Everything else being constant, as AT — 0 the
boundary layer at a given station does not thicken
indefinitely but reaches, asymptotically, a value pro-
portional to (EcRa)™! * which is constant since, appro-
priately, EcRa is independent of AT.

Similar remarks apply for any property of the flow
field such as mass flux in the boundary layer. wall
shear stress, wall heat transfer and so on.

The essence of the above-mentioned two key points
pertains (with few appropriate modifications. if any) to
all free convection problems. Hence, the research
avenues 1o be pursued appear clear. For each specific
problem the other two sets of boundary-layer equa-
tions. for E¢ = O(1) and Ec¢ — x should be derived
and solved. Solutions of the set of equations for
Ec¢ = O(1) provide, for any flow feature, the fairing
between the two different functional expressions ob-
tained in the two limits Ec — 0 (as already available
from the conventional theory) and Ec — x. These
solutions will yield quantitative information on the
Ec-rate of variation of the field features. Thus ultimately
they will provide a quantitative assessment on the
exact range of validity of the conventional solution
(which may well turn out to be different features of
the field) as well as corrections to be applied for Ec¢
small.

The present paper offers a first contribution in this
direction by investigating the solutions of the laminar
flat plate problem, over the entire Ec-range, for the
case in which similarity prevails.

In paragraph (2) the different sets of zeroth order
boundary-layer equations are briefly derived both for
completeness sake and to further elucidate a number
of cssential points. Similarity forms are discussed in
paragraph (3); solutions are presented and analysed in
paragraph (4). The main conclusions are reviewed and
summarized in the last paragraph.

2. BOUNDARY-LAYER EQUATIONS

Only the zeroth order approximations for the outer
and inner regions will be considered. The coordinate
systems has the origin at the lower edge of the vertical
plate with the x-axis pointing upward. The gas is taken
to be perfect and bulk viscosity effects are neglected.
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The following non-dimensional (asterisked) quan-
tities are introduced:

x = Hx*, y=LHy*, p=pix=0)p*
p=pdx=0p*; u=1Vou*; v="L1LVo*

T=ATT*+T,.AT=T0.0)~T,= T,(0)—T, @D
W= ¥ 2= LA
The scales
V=LV l=L,H 22)

for vertical component of the velocity and for the
horizontal distance from the plate are left for the
moment unspecified since their appropriate expression
depends on the order of magnitude of the Eckert
number. The scale for the horizontal component of
the velocity is fixed by the requirement that horizontal
and vertical convection be of the same order of
magnitude.

The zeroth order outer solution (subscript e) de-

scribes a quiescent isothermal ambient and is given by:
uf =t =Tr=0

B 2.3)

p¥ = p¥ = exp(— M*x*).

The equations for the zeroth order inner field can be
written (upon neglecting terms of order /2 or smaller
and on accounting for the fact that, to within this
approximation, p*(x*, y*) = p¥(x*)):
(p*u*)ye + (p*v*)y. =0

12 Mg Pryti
p*T* = ‘Mﬁ [p*v* Ve — ( Im) (,u"u;?‘.),.]

ph =021} 4
(}" 1)15 u*z

290

RaPriZi}
oM*

1-2
(A*TH),. = ( ) p*v*-v*[r* +

Prizv—1
+ Ecx*j| - /— (p*u*ul),.

!

p*(1+0T*) = p* = exp(—M?2x*)

where
V* y* = u“:i—-kv*i
ox* cy*
and the numbers Ra, Pr and Ec are evaluated at the
condition of the bulk fluid for x = 0.

The fourth equation expresses the conservation of
total energy, sum of enthalpy, kinetic and potential
energies. The latter is given by ¢ = gx = V;*x and is
referred to its value at x = 0.

Equations (2.4) represent the zeroth order term of an
asymptotic series expansion in terms of the small
parameter ¢ = [,. As this parameter is just the scale
factor I, its explicit expression will depend on the order
of magnitude of the Eckert number.

Further discussions will be restricted to the case in
which M? « 1 and 6 « 1. These conditions imply the
validity of the approximation p* = pu*=i*=1 so
that the velocity field is solenoidal. The order of
magnitude of the Eckert number determines how the
pressure plus body force T* and thermal diffusion
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T,%,. terms are balanced in the momentum and energy
equations. The following three cases appear relevant:
() Ec«1; (2) Ec=0(1); (3) Ec»1. (2.5

In the first two cases momentum and energy balance
require that (unless inessential constants of order one):
1,12 (RaPr v L I_f& B
M\ 8 ) T MW
These relations determine I, and I, and, consequently,

the velocity and length scales and the expansion
parameter which are given by:

ATx\'? )

V=1uVa=<Hg 1) =1(Ra)'-’z
vT, H

I=1,H=H{Ra)", ¢=I,=(Ra) "

The corresponding set of zeroth order boundary-layer
equations is:

(2.6)

uf+v=0
1
EV" ‘V*u* =ul,.+T*
V*-V*T*+Ecu* = T},
p* =1

(2.7

The boundary conditions pertinent to an impermeable
plate with non-uniform temperature are:

u*(x*,0) = v*(x*0)=0

lim u*(x*, y*) = y!l{l}n T*(x*,y*) =0

yo

T*(x*,0) = W*(x*); [W*0)=1].

(2.8)

The conventional formulation is valid only when
Ec « 1 [first case in (2.5)] and is formally recovered
from equations (2.7) by setting Ec = 0.

When Ec = O(1) [second case in (2.5)] the potential
energy is of the same order as the enthalpy and its
contribution to the energy conservation equation can-
not be neglected. The term Ecu* introduces a stronger
coupling between velocity and temperature fields. It
represents the rate of work done by the body force on
the particle during its motion, equal to minus the time
rate of change of its potential energy. The relevance
of this term is inequivocally established when the total
energy conservation equation is used. When, instead,
one uses the balance equation for the internal energy,
particular care must be exercised in handling the
reversible work term pV-V. It is speculated that one
of the reasons why the system (2.7) has never been
considered before is because the internal energy balance
equation is usually employed and, for 6 « 1, the pV-V
term is much too hurriedly eliminated on the ground
that V-V = 0. This inference is valid only for Ec « 1.
The correct reasoning to be applied in the other cases
is discussed in [4] and, obviously, leads to the same
set of equations (2.7).

In the third case (Ec » 1) the potential energy is
more relevant than both the enthalpy and the kinetic
energy so that thermal diffusion can only be balanced
by the rate of work done by the body force.
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As equations (2.4) show. the appropriate balancing
requires that:

E(‘I,,[f.(RaPr P ‘3_1 29
()) h le.(()Ra) B '

\

from which the following new expressions 1. [ and & for
the scales and the expansion parameter are obtained:

_ / 12
'=AT( ) - Ec
uT,

H
= (E(vR(l)l A= Ec¢ 1 4[; &= ‘E(Ra' 14 =E(‘_1"‘(;.
»

The pertinent equations are:

i+t =0
wh .+ T*=0
Tr.—i* =0

(2.10)

where a bar denotes quantities referred to the new
scales (2.9). Boundary conditions are as in equation
(2.8)in terms of barred quantities. Equations for E¢ » 1
were incompletely stated in [4] since only the par-
ticular case i* = 0 was reported. All convection terms
have disappeared and gravitational cffects are solely
balanced by diffusion in both momentum and energy
equation. The * field is uncoupled from the i* and
T* fields.

As cquations (2.9) show. the set of cquations (2.10)
can be obtained from the set (2.7) by performing the
following changes in velocity and length scales:

P =(Ec) *v* i* = (Ec) 2u*: i =(Ec)* e (2.11)

and by neglecting terms of order (Ec) ' or smaller.

As mentioned in the introduction, the difference in
the velocity and length scales for the two limits Ec — 0
and Ec¢ — > imply different functional behaviours of
the flow properties, the fairing being afforded by the
solutions of equations (2.7) for different values of Ec.
Some further elaboration of this point may be appro-
priate.

Consider for instance the expressions (2.6) and (2.9)
for the velocity scale which will be rewritten as:

; H(} 1 Z‘.AT 1'2.
Pr 1.2 (R”{:‘) ( 7:, ) )
V<RT;) B

C\12AT
(;-_'1'/) T,

N ’

Ec<0(1) (2.12)

Ec>»1.  (2.13)
At a given station, the maximum values of the vertical
component of the velocity referred to V(Pr/RT)'? is
proportional to the values given by equations (2.12)
and (2.13) in the limits for Ec - 0 and Ec — « respect-
ively. Hence, everything else being constant, this maxi-
mum value of the upward velocity tends to be
proportional to (AT T,)* ? as Ec — 0 (i.e. for sufficiently
large values of AT‘T,) as indeed predicted by the con-
ventional theory. whereas it tends to be proportional
to AT/ T, as Ec — ¢ (thus, in particular, it goes to zero
as AT/T,). How rapidly it goes from one functional
dependence to the other can only be assessed by
actually solving the system of equations (2.7).

Similarly, everything else being constant, the maxi-
mum value of the vertical component of the velocity.
at a given station. tends to become proportional to
(Hg'RT,)' * as Hy RT,tends to zero (Ec — 0) whereas
1t tends to a constant value. independent of Hy RT,,
as this parameter increases (E¢ ~ 2).

Similar remarks can be made with respect to any
other field property.

3. SIMILARITY FORMS OF SOLUTIONS
Let:
I=x*4
TH(x* %) = Bo)gn)
YHX* ) = el )

. () e
W=yl =t
*T5

= y*3{x¥)

(3.1)

r o140 dey
VRS Sae! Tae
where € is an arbitrary constant. y* is the non-
dimensional stream function. n the similarity variable.
primes denote differentiation with respect to 5 and
B(E), e(&), 3(Z) are scale factors.

The definitions (3.1) are appropriate for the analysis
of system (2.7). For that of system (2.10) the same
definitions (3.1) apply in terms of barred quantities
(e.g. n = ¥*:5; i* = & ()i5 and so on) with:

B=p: S=Ec'*s: ¢=Ec % (3.2)

Appropriate substitutions into cquations (2.7) and
(2.10) lead to the following sets of ordinary differential
equations:

;—r(mﬂ T—uy 4 ayg =0 (33a)
g +u fg —aaf'g—usEcf =0
JI7 g =0
Lg"—asf = 0.

1+

{(3.3b)

Similarity conditions are expressed by the constancy
of the a’s and u;’s respectively defined as:

Sde 52 dje . &3p
)y =0~ . dy=0"— | ;[ ]idy =~
dé d;( )) g

. . & © (34a)

de dfs e
\Ll.; = ﬂd_;f (s = /f
B o
ay = —(’ L s = /_f . (34b)

The similarity condition on as is not required in the
conventional formulation (Ec = 0) and equations (3.4a)
reduce then to the set solved by Sparrow and Gregg
[5). Conversely. for Ec » 1 only two similarity condi-
tions need to be imposed. For Ec = O(1) the additional
condition on as restricts the classes of similarity solu-
tions to the linear or constant wall temperature
distributions. If 8’ is the constant rate of change of wall
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temperature, the general solutions of equations (3.4a)
are given, when suitably normalized. by

- _ . 14+pE
B =1+p¢ 6=Ec™!; e(d)= ?(5—4 = %34 (3.5
and the corresponding form of equations (3.3a) reads:
rrr Bl ronr 2
S U =) g =0

g (3.6)
¢+ g =91 =0,
C

For Ec » 1 the reduced number of similarity condi-
tions to be imposed enlarges the classes of similarity
solutions to include any distribution of wall tempera-
ture. Indeed the general (normalized) solution of
equations (3.4b) is simply:

s=11 &) =eQ. (3.7)
The corresponding equations read:
"+g=0
{f,, i (38)
g —f =0.
In both cases the boundary conditions are:
flO)= 0 =0; g(0)=1
tim £’ = lim g = 0. (3.9)
n—x n—

Equations (3.6) can be given in several alternative
forms by subjecting them to appropriate changes in the
dependent and independent variables. All of them are
equivalent when Ec¢ = O(1) but they would correspond
to sets of velocity and length scales of different orders
of magnitude when Ec is not of order one. Substitution
of equations (3.5) into equation (3.1) shows that, for
Ec > 1, the scales corresponding to equations (3.6) are
just the scales | and V appropriate to the limiting case
Ec— oc. This is further evidenced by the fact that
equations (3.8), holding for Ec¢ » I, can be formally
obtained from equations (3.6) by performing on them
the limit for Ec — o«c.

Among all alternate forms of equations (3.6) a
relevant role is played by the one which corresponds
to the scales [ and V appropriate to the other limit for
Ec¢ — 0. Such a form obtained, as clearly suggested by
equations (2.11), when the following changes are
performed:

. Ecy**
f(n)—( ﬁ,) Flo)

g(n) = G(o)

Ec 1/4
1=(F) ©

The new form of equations (3.6) reads:

(3.10)

1
F"+—(FF'-F)+G=0
Pr
(3.11)
. e ECo,
G'+FG —FG—-EF =0
and they are subject to the same type of boundary
conditions given by equations (3.9). As a check, notice
that equations (3.11) reduce, in the limit for Ec -0,
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to the conventional equations holding for linearly
varying wall temperature. Equations (3.6) and (3.11)
correspond to two different representations of the field
variables which, together, cover the entire range of Ec
from O to oc. These representations are obtained by
combining equations (3.5) with equations (3.1), (2.6)
and (2.1) for one representation and by further per-
forming the transformation (3.10) for the other one.
The result 1s:

=55 (0. )

-2 5e) wr(nreg)
H (%)M(a Pr ’;‘)
‘%(5’3) Aﬂ'f(n, L |

U T"Ta - ﬁ(é)c(a, Pr, EC)

v(x, y)

(3.12)

T.(0) - B
_ 3
- ﬂ(é)g(n, Pri)
x=Hx*=H(E-G)

Ho Hn
V= — =
" (f'Ra)"*  (EcRa)'*

where the dependence of the similarity functions on the
parameter appearing in the corresponding equation is
explicited out.

The more relevant features of the subject—similar
flow fields can now be discussed. As for the general
case, what matters is the relative importance, in the
energy conservation equation, of the contributions due
to convection and time rate of work done by the body
force.

The point of qualifying the similar fields is that the
latter contribution is proportional to Ec and the former
to f’ (as a consequence of the constraints imposed by
similarity conditions).

Hence, as equations (3.12) show, Ec and §' play a
“symmetrical role™ in the definitions of the scale factors
whereas the similarity profiles depend upon Ec and f
only through their ratio E¢' = Ec/f".

The different scale factors in the two representations
of the independent and dependent variables are ob-
tained by interchanging Ec¢ and 8 wherever they appear
combined with the Rayleigh number Ra (which is the
key scale parameter).

By their very nature, the similarity functions F, G, f. g
cannot depend on overall quantities such as H and AT.
This is appropriately reflected by their dependence on
the ratio E¢’. This ratio can indeed be interpreted as
a “differential” Eckert number for, when the appro-
priate substitutions are made, one gets:

gdx
cpd'I'w'
The different roles played by Ec and ' in the scale

E¢' = Eciff = (3.13)
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factors and in the similarity functions are fundamental
in analysing the limits for E¢" -0 and E¢ — +. For
¢ finite and Ec — 0 the first representation in equation
(3.12) 1s appropriate. In this limit " disappears from
the differential equations (3.11) which reduce to those
solved by Sparrow and Gregg [5]. One thus recovers
the results of conventional theory for a linear distri-
bution of wall temperature since the contribution due
to body force power can be neglected in the energy
conservation equation. The wall temperature gradient
[ enters only in the definition of the scales and is
the “controlling”™ factor in determining the limits of
applicability of a boundary-layer theory. For the sub-
ject similar flow field, these limits depend on the
value of the parameter:

fRa = (;Hj dT.

o

Pr (3.14)
dx

which as E¢’ can be interpreted as a “differential” form
of the Rayleigh number. Conversely. for =0 and
Ec¢ finite, E¢’ — » and the contributions due to the
convection terms can be neglected in both the momen-
tum and energy equations. The representation to be
used in investigating this limit is the second one. The
factor “controlling™ the different scales is Ec. In par-
ticular: the thickness of the boundary layer depends
on the value of EcRa which, as already pointed out.
is independent of AT. For E¢" - . equations (3.6)
reduce to cquations (3.8): the similarity profiles are
unique, their dependence on Pr, fi'. Ec¢ having dis-
appeared. Thus, in particular. the similarity profiles
for a constant wall temperature ff° =0 and any non-
nullified value of Ec are identical to the similarity
profiles prevailing for uny wall temperature distribution
in the limit for E¢ — . The differences are felt only
in the length, velocity and temperature scales as given
by the second representation in equations (3.12) (notice.
in particular. that for a constant wall temperature the
r-component scale vanishes identically).

The last relevant case to be discussed is when both
/=0 and Ec¢ -0 with E¢ = Fc f finite. Either one
of the representations (3.12) is appropriate: the two
sets of scales arc essentially of the same order. The
similar profiles depend on the particular (finite) value
of E¢’ and, consequently. in this range the conventional
theory gives erroneous results. On the light of the
remarks previously made on the interpretation of /'
and Ec¢ the situation appears to be exactly the same

as that discussed. in the preceding paragraph. for '

general non-similar flow fields.

The results of the conventional theory, as given by
the functions F(a, Pr.0), G(o, Pr.0), arc valid only for
/' > Ec¢ and thus cannot be extrapolated down to
8 = 0. No matter how small Ec is. as #’ decreases onc
must eventually switch from the first to the second
representation. This for instance implies that the
boundary layer does not thicken indefinitely but
reaches  asymptotically a value proportional to
HiEcRa)' * (independent of '), and that the scale for
the u-component of the velocity remains finite as
S =+ 0. In other and more general words, as - 0. Ec¢
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becomes the controlling factor for the scales and the
similar profiles tend toward the “universal™ profiles
detined by equations 13.8).

Two closely reluted questions need further investi-
cations and will be only briefly mentioned here. The
first one coneerns the commutativity of the operations
(ar hmit for Ec¢ 0 and ti) aimposition of similarity
conditions, which are performed in the above order in
the conventional theory and v the reversed order in
the present approach. The two operations commute
only in the case of linear wall temperature distribution
albeit. as scen. the f-range of applicability of the
results of conventional theory is bounded from below.

The present investigation suggests that an analogous
limitation holds for the other classes of similar solu-
tions given by the conventional theory. There must be
a parameter which measures the relative importance
of comvection terms and results of conventional theory
are applicable only when this parameter is much larger
than Ec. Outside this range. the conventional formu-
lation 1s no longer valid and. m addition, the flow field
is no longer simtlar. To mvestigate these cases fand ¢
in cquations 3.1) must be considered also functions
of J and the appropriate analysis iy to be performed
on the partial differential equations resulting from such
substitution into the original system (2.4).

The constant wall temperature needs special mention
since it is a somewhat “singular™ case. Indeed. strictly
speaking. the conventional similar solution applies only
when both d7, dx and Fe are exactly zero. A totally
different similar solution (namely the one exhibiting
the universal profilesy 1s obtained for d7,, dx exactly
sero when Ec is different from zero. no matter how
small. This solution is valid only for FeRa sufficiently
large: hence. for Ec small. it will prevail. if at all, in a
region far away from the leading edge. Thus the prob-
lem 1o be investigated quantitatively 1y the entity and
nature of the non-similarity corrections which must
be performed on the conventional constant wall tem-
perature similarity solution for ¢+ [ but not null.

The second question refers to the lincar wall tem-
perature distribution and concerns the sign of fi°. The
first representation s applicable as previously given
only for > 0. For i’ < 0 one must replace /i with
() in equations (3.10) and change the sign of the
convection terms in equations (3.1, Similar solutions
for < 0 pose. however, some problems with regard
to the range of values of 7 (if any) for which solutions
satisfving the prescribed boundury conditions exist.
Similar solutions of the conmventional boundary-layer
cquations (k¢ = 01y have been given only for /i 7 0 but
no explicit proof scems 1o have been published con-
cerning their non-existence for 1 + . On the other
hand. preliminary investigations by the present authors
have shown that solutions do cxast tor 7 <20 and ke
finite. The matter clearly needs Rurther studies.

4. SIMILAR PROFILES

4.1, Universal profiles
The solution of system 3.7} with the boundary con-
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ditions (3.8) can be given in closed form and reads:
f(n, Pr, Ecr” = ¢)

! nom
= —- ——= || sin-wz+4cos— |—1
i e RS

gin. Pr.Ee = x) = exp - )™

4.1)

Substitution in the second representation (3.12) for the
field variables leads to the following expressions for
the wall shear stress 7, and the local Nusselt num-
ber Nu:
uef  Ra*>*
Tw = (V_lz)HZ EcY'4

x (éT Bx
Nu=—|-] = ' (EcRa)*.
i AT(@yl-o oy ERY

portional to (— ). Mass exchange between the bound-
ary layer and the bulk fluid depends on the sign of the
rate of change of wall temperature. For constant wall
temperature (' = 0) the boundary layer is isolated and
the total upward mass flux in it is constant. In the
region where 8 > 0 (increasing wall temperature) mass
is being entrained in the boundary layer. The converse
occurs inregions where the wall temperature decreases:
mass flows from the boundary layer into the bulk
fluid. This behaviour of the subject similarity flow
fields is readily explained when noticing that the total
upward mass flux through any section is, as a simple
calculation shows, proportional to the local tempera-
ture difference T,(x)— T,. Hence, when T,(x)-T, in-
creases with x, mass must be entrained in the boundary
layer from the outer fluid, and vice versa.

0.8 Io,e
» .=
»
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F1G. 1. Universal velocity components and temperature profiles for Ec = «.

The universal velocity and temperature profiles are
plotted in Fig. 1 against #/,/2.

In the upper two thirds of the (constant) boundary-
layer thickness, the temperature is less than the bulk
temperature. This is so because, as repeatedly men-
tioned, for E¢’ » 1, convection effects are negligible, and
pressure plus body force terms in the momentum
equation are balanced only by the resultant of the
viscous stresses. Hence, when the latter changes sign
(namely at the inflection point of the u-profile) so does
the temperature difference (T—T,). For exactly the
same reason near the boundary-layer outer edge therc
is a region (above the inflection point of the temperature
profile) where there is a small downward velocity. The
t-component of the velocity at the outer edge is pro-

4.2. Linear wall temperature distribution

Equations (3.6) have been solved numerically with
the automatic initial-value technique developed by
Nachtsheims and Swigert [6] for several values of the
Prandtl number Pr and of the parameter E¢' =
Ec/f > 0.

Results will be presented and discussed only for
Pr = 0.72 since the Prandtl number, within its range
of values appropriate to gases, does not affect appreci-
ably the main features.

Velocity and temperature profiles for Pr = 0.72 are
shown in Figs. 2-7. To exhibit more vividly the
dependence of the similar profiles on the parameter
Ec, the representation in terms of F, F', G has been
used for 0 < E¢’ < 1 (Figs. 2-4), and that in terms of
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Fiu. 2. Vertical velocity component profiles for Pro= 072, Ec [ < | and linearly varying wall temperature
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Fia. 3. Horizontal velocity component profiles for Pr = 0.72, E¢, " < 1 and lincarly varying wall temperature
{Ec ' = 0 corresponds to conventional formulation).

f.J'. and g has been used for 1 < E¢’ < » (Figs. 5-7). =(Ec¢) **f(q. Pr.Ec) 4.3)
Comparison between the two sets of figures is made T T T-T
asier if ati ) ., i [ LA =G - Pr E¢
casier If equations (3 l12) arc rewritten as: BT =T, = 1w 1 (o, Pr.EC)
. H g2 -
Ulx.n = - By Fa, Pr.Ec) =gl Pr.EC)
aff \ Ra

N . o ={EC)" " %y
={(Ec) =g, Pr. E¢

] H i Notice. in particular, that both G and ¢ give the tem-
—Vixyy = % (Rafi)t* = Fla. Pr.Ec) perature difference in terms of the “local™ wall tem-
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FiG. 7. Temperature profiles for Pr = 0.72, Ec'ff' > 1 and linearly varying wall temperature
(Ec:ff’ = = corresponds to universal profile).

perature difference T, (x}— T, and that the two sets of
profiles coincide for E¢' = 1.

The profiles for E¢’ = 0 are the “conventional™ pro-
files given by Sparrow and Gregg. The effects of E¢’
in the range (0, 1) are seen to be quite sizeable and
comparatively of the same order for both velocity and
temperature similar profiles. As Ec¢’ increases the point
where the u-component obtains a maximum moves
closer to the wall and, quite expectedly, this maximum
value decreases. For E¢' =1 it is 70°, of the conven-
tional value. Similarly. F(< ) decreases as E¢’ increases
and for E¢" =1 1t is equal to 53%, of the conventional
value.

As Ec¢' increases, the values of the temperaturce
similarity profile decreases and. consequently. the tem-
perature normal gradient at the wall increases in
absolute value. This is expected since. as E¢’ increases.
the rate of change of a particle’s potential energy
becomes increasingly more important and thus the
energy transferred from the plate to the boundary layer
must be spent not only to raise the particle’s tempera-
ture but also its potential energy. The increase in
energy transmitted by the plate will eventually become
insufficient to perform both actions throughout the
boundary layer so that, as E¢’ increases. a percentage
of the outer boundary will eventually have a tempera-
ture smaller than the bulk temperature. This outer
rcgion is already measurable for E¢” = 1.

Figures 5 -7 show that the influence of E¢” on the
functions f, f". g is comparatively smaller. This implies
that most of its influence on w. r. T is accounted for
by the factorization represented in equations (3.12).
Near the plate: the temperature field is substantially
independent of E¢’ for E¢' > 1; Fig. 7 shows that the
y-profiles for | < E¢’ € » are practically indistinguish-
able in that region.

The influence of E¢ on the wall shear stress and on
the Nusselt number is shown in Figs. 8 and 9 where
the quantities 7,. and Nu, defined by:

HZ i 14
s (] ,) v = F10. Pr.Ec)
wxff\Ra
=(Ec') 410, Pr.E¢)
_H , .
;\'u=ﬂ——([3Ra) “Nu= —G'0, Pr.Ec)
X

= —E’¢'(0, Pr. E¢)
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F1G. 8. Dimensionless shear stress at the wall vs the differ-
ential Eckert number Ec/ff for Pr = (.72
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F1G. 9. Local Nusselt number vs the differential Eckert
number Ec:f for Pr = 0.72.

arc plotted against E¢’. The two limiting bchaviours
are also shown. For E¢’ — 0, 7, and Nu tend to values
depending only on the Prandtl number. This depen-
dence is too weak to be shown on the diagrams. For
E¢' — ., 7, and Nu tend to be proportional to (E¢) ' #
and (Ec’)"* respectively. The rate of deviation from the
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limiting behaviours is larger for E¢’ -0 than for
Ec' — o and this difference is more marked for Nu.
Indeed, as Figs. 8 and 9 show, for E¢’ =1 the two
limiting solutions (for E¢' =0 and Ec¢’ — x) yield
practically the same value for 7,. whereas for Nu, the
value given by the limiting solution for E¢' — o is
much closer to the exact valuc than that given by the
other limiting solution. In other words, for low values
of E¢’, Nu is more sensitive than t,. to changes in Ec’.

All quantitative results presented in this paragraph
show that the results given by the conventional theory
for linearly varying wall temperature can be practi-
cally accepted up to values of E¢’ between 0.05 and
0.1 [ie. for ' 2 (0.05-0.1)Ec]. The errors thus made
vary according to the field property being considered.
For E¢' = 0.1 the maximum value of U is overestimated
by 4.7%. i, is overestimated by 2.4%, and Nuis under-
estimated by 4.37,.

5. CONCLUDING REMARKS

Similar solutions for the laminar flat plate free con-
vection problems throughout the entire Ec-range have
been investigated. Some of the most important con-
clusions are now reviewed and summarized.

The Eckert number measures the relative importance
between potential energy and enthalpy of a particle
(static interpretation) or between the power associated
with body force and enthalpy convection (dynamic
interpretation) and plays a relevant role in the char-
acterization of similar flow fields.

When Ec is sufficiently large for the contribution of
convection terms to be negligible (i.e. in the limit for
Ec — ), the number of similarity constraints to be
imposed is minimum and any wall temperature dis-
tribution leads to similar fields. The similarity variable
is independent of x: the similarity profiles are
“universal” (i.c. do not depend on any parameter) and
are given in closed form. These similar ficlds represent
the x-wise asymptotic solutions to which any flat plate
problem will eventually tend. provided: Ec is suf-
ficiently large for convective terms to be negligible,
EcRa is sufficiently large for the boundary-layer
approximation to be applicable and the flow remains
laminar. When Ec is sufficiently small for the con-
tribution of potential energy to be ncgligible (ic. in
limit for Ec —0) the zeroth order boundary-layer
equations are those given by the conventional theory.
The number of similarity constraints is intermediate
and, as well known, similar solutions prevail for power
law, and exponential distributions of wall temperature.

When non «a priori assumption is made on the order
of magnitude of Ec similarity constraints are to be
imposed on all terms contributing to momentum
balance and total energy- conservation and thus the
class of similar solutions result the. most limited.
Similarity flow fields are obtainable only when the wall
temperature varies linearly (or. in particular. is con-
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stant). The similarity variable is independent of the
x-coordinate; the similarity functions depend on the
Prandtl number and on the ratio E' = E¢/§" where §
is the constant wall temperature gradient. Velocity and
length scales are controlled by § (resp. Ec) in the limit
for Ec — 0 (resp. ' = 0) and E¢’ = 0 (resp. E¢’ — x).
For =0 and any non-vanishing value of Ec¢ the
similarity profiles coincide with the above-mentioned
universal profiles. For E¢’ = 0. " s 0 the conventional
similarity solution is recovered.

The linear wall temperature distribution with posi-
tive gradient is the only distribution for which the
flow field is similar throughout the Ec range. The range
of validity of the conventional solution for linear wall
temperature is bounded from below in terms of the
parameter E¢’ = Ec/f§’. Numerical solutions of the more
accurate set of equations show that the practical lower
limit for Ec¢’ is between 0.05 and 0.1 depending on the
field property being considered. This implies that con-
ventional solutions cannot be used for values of the
non-dimensional temperature gradient ' smaller than
(0.05-0.1) Ec.

In all other cases flow fields are not similar through-
out the Ec¢ range. Results of the present analysis would
indicate that all other conventional similarity solutions
should have their range of validity bounded from below
in a manner analogous to that found for the linear
wall temperature.

This aspect will be treated extensively elsewhere
since the corrections to be made to the conventional
theory are no longer in similar form. The most striking
example is given by the constant wall temperature case
for which the flow field is strikingly similar only when
Ec is exactly zero.

Subject of future investigation will also be the case
of linearly decreasing wall temperature (' < 0). Results
of a preliminary analysis have shown that, contrary to
what seems to be the case for the conventional theory,
similar solutions do exist for " < 0 and Ec finite.
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NOUVELLES CLASSES DE SOLUTIONS EN SIMILITUDE POUR LES
PROBLEMES DE CONVECTION NATURELLFE LAMINAIRE

Résumeé  Comme I'a montré le premier auteur, la formulation exacte de la théorie de la couche limite
en convection naturclle dépend de l'ordre de grandeur du nombre d'Eckert défini par Fo = Hg:C,AT.
la théorie conventionnelle étant valable a la limite Ec — 0. Le présent article examine les solutions du
probleme de la plaque plane laminaire, sur tout le domaine de variation de Ec. dans le cas ot existe
une similitude.

On montre que pour Ec = 011) les solutions en similitude sont obtenues pour unc température de
paroi variant linéairement (en particulier pour une température constante) tandis quid la limite Ec — «
toute distribution de température pariétale conduit a des solutions en similitude.

Les profils en similitude pour Ec = O(1) dépendent du nombre de Prandtl et du rapport {£c Prou ff
est le gradient constant de température a la paroi. Les profils en similitude pour ¢ — . sont universels
en ce sens qu'il ne dépendent d'aucun paramétre. Les profils universels sont complétement déterminegs.

Des solutions numériques pour Pr = 0.72 ¢t plusieurs valeurs de {Ec. ') sont présentées ct analysées
en termes de profils de vitesse et de température. de tension de cisaillement pariétal et du nombre de
Nusselt. L'article montre en particulier que les résultats de la théoric classique ne peuvent étre utilisés

pour " inférieur 4 {0.05 0.1) Ec.

NEUE GRUPPEN VON AHNLICHKEITSLOSUNGEN FUR PROBLEME
DER LAMINAREN. FREIEN KONVEKTION

Zusammenfassung--Wie von den Autoren friher gezeigt worden ist, hiingt die geeignete Formulierung
der Grenzschichttheorie fiir die freie Konvektion von der GroBenordnung der Eckert-Zahl Ec = Hgic,AT
ab, wobei die konventionelle Theorie fiir den Grenzfall Ec — 0 giiltig ist. Die vorliegende Arbeit untersucht
unter Voraussetzung der Ahnlichkeit die Lésungen des laminaren Problems der ebenen Platte iiber den
gesamten Bereich der Ec-Zahlen.

Es wird gezeigt. daB fiir Ec = 0(1) Ahnlichkeitslésungen fiir linear verinderliche Wandtemperaturen
(im speziellen konstante Wandtemperaturen) moglich sind, wahrend. fiir Ec — = jede Wandtemperatur-
verteilung zu Ahnlichkeitslsungen fiihrt.

Ahnliche Profile fiir Ec = 0(1) héngen von der Prandtl-Zahi und dem Verhaltnis (Ec;f) ab, wobei §
der konstante Gradient der Wandtemperatur ist. Ahnliche Profile fiir Ec — x sind insofern universell,
als sie nicht von anderen Parametern abhidngen. Universelle Profile werden in geschlossener Form
angegeben.

Fiir Pr = 0,72 und mehrere Werte von (Ec/f’) werden numerische Losungen angegeben und anhand
von Geschwindigkeits- und Tempeératurprofilen, von Wandschubspannungen und Nusselt-Zahlen
analysiert. Insbesondere wird gezeigt, daBl die Ergebnisse der konvektionellen Theorie fiir 8'-Werte kleiner

als (0.05bis 0.1). Ec nicht verwendet werden konnen.

HOBbIE KJJIACCbhl ABTOMOAEJBHBIX PEWEHWHA 3A4AY
JAMUHAPHOW CBOBOAHOM KOHBEKLWK

Annorauds — Kak noka3aHo nepsbiM aBTOPOM. NPaBHIbHAR QOPMYIMPOBKA TEOPHH MOT PAHHYHOIO
€108 npy ¢BOOOIHONH KOHBEKUMHM 3aBHCHT OT (10PAIKA BETHYMHbI 4MC.IA DKKEpTa, ONpeleseMoro
kak Ec  Hgic, AT, npudem oGLICNPHHATAS TEOpUa ABIAETCA CrpaBeAIMsod B npeaeie Ec¢-»0.
B HacToswei cTaTbe paccMaTpHBAOTCA NMPEUMMYLLECTBEHHO aBTOMOE.ILHbIE PELUEHHSA 3adadH O
JaMHHAPHOM ODTEKaHMHM TUIOCKOW [IACTMHBLI A7 LWHMPOKOTO auana3oHa HM3MeHeHHAa uvucna Ec.
MMoxka3ano, 410 npu Ec--- 0(1) aBTOMOJEIbHbIE PELICHHS MOXHO TNO:1YYHTh /18 .IMHERHO H3IMEHS-
tOLLIEHCA TeMMepaTypbl CTEHKH (B YACTHOCTH, MOCTOSHHOR), B TO BpeMs Kak npu Ec -~ = 11060e
pacnpeieieHne TeMNepaTypbl CTEHKH MPUBOIMT K aBTOMOJE.1bHLIM DPEULICHMAM. ABTOMOE.IbHbIC
npotuan npu E£c - 0(1) 3aBUCAT OT 3HayeHus uucaa IlpaHaTas u oTHowenus (Ecif’). rae B —
MOCTOSRHHbIA TpaJueHT TeMMepaTypbl CTEHKH. ABTOMOJE/bHble OpPOGHMAW 1pu Ec-+ £ yHHBEp-
C4A.IbHBI, TAK KAK HE 3aBMCAT HM OT OAHOrO M3 MapameTpoB. YHHMBepcasibHble NMPOQHU.IM AaHbl B
3aMKHYTOM BH.¢e. [TpeicTaBneHsl YHCIeHHbIE petueHus ang cay4as Pro 0,72 ¥ Hecxo.1bKUX 3HaYEHU M
(EciB), a TaKke MX aHAIH3 ¢ IOMOLLBIO NPOdHUNEH CKOPOCTH U TEMMEPATYPbl, KaCATE.ILHOTO Hanps-
JKeHMst Ha cTeHke ¥ yucla HyccenbTa. B cTaThe, B YaCTHOCTH, MOKA3aHO, YTO KIACCHYECKAA TEOPHS
HenpHeMm.1emMa Npy 3HAYEHUAX B Huxe (0,05 © 0,1)Ec.



