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Abstract--As shown by the senior author, the proper formulation of free convection boundary-layer 
theory depends on order of magnitude of the Eckert number defined as Ec = Hg/%A T, the conventional 
theory being valid in the limit Ec --* O. The present paper investigates the solutions of the laminar flat 
plate problem, over the entire Ec-range, for the case in which similarity prevails. It is shown that for 
Ec - O(1) the similar solutions are attainable for linearly varying wall temperature (in particular constant) 
whereas in the limit for Ec ~ oo any wall temperature distribution leads to similar solutions. Similar 
profiles for Ec =- O(1) depend on the Prandtl number and on the ratio (Ec/ff) where ,6" is the constant 
wall temperature gradient. Similar profiles for Ec --, oc are universal insofar as they do not depend on 
any parameter. Universal profiles are given in closed form. Numerical solutions for Pr = 0.72 and several 
values of (Ec/ff) are presented and analysed in terms of velocity and temperature profiles, wall shear 
stress and Nusselt number. In particular the paper shows that the results of conventional theory cannot 

be used for fl' smaller than (0.05-0.1) Ec. 
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dimensionless constants; #, 
arbitrary constant; v, 
specific heat at constant pressure; ~, 
Eckert number (= Hg/cpAT);  p, 

differential Eckert number ( = g dx/%dTw);  o, 

dimensionless functions; z, 
dimensionless functions; qk 
acceleration due to gravity; ~, 
Grashof number (=  gATHa/v2Ta); 09, 

plate height; 
scale factors; Subscripts 
dimensionless coefficient ( = H g / R  T~); a, ambient; 
Nusselt number;  w, at the wall. 
pressure; 
Prandtl number;  
gas constant; 
Rayleigh number (=  GrPr); 

temperature; 
temperature difference [ =  T~(0)- T~]; 
velocity components; 
scale factor; 
cartesian coordinates; 
dimensionless function. 

Greek symbols 

ct, thermal diffusivity coefficient; 
fl(¢), dimensionless function; 
?, specific heat ratio; 
6, dimensionless function; 
a, scale factor [ =  (Ra)- ' " ' ] ;  
~, scale factor [ = (EcRa)-1;4]; 

r/, similarity variable [ = Y*/6*(O]; 
0, dimensionless coefficient [ =  A T / ~ ] ;  

• t'This paper was contributed by the authors for the Allan 
Ede Memorial issue, Vol. 19, No. 10; but publication was 
unfortunately delayed. 

thermal conductivity coefficient; 
dynamic viscosity coefficient; 
kinematic viscosity coefficient; 
similarity variable; 
density; 
dimensionless function; 
shear stress; 
dimensionless function; 
stream function; 
dimensionless constant. 

Superscripts 

e, in the outer region; 
*, dimensionless quantity; 

dimensionless quantity for Ec >> 1. 

I. I N T R O D U C T I O N  

MATHEMATICAL modeling and solution of laminar 
free convection boundary layers are classical problems, 
recently reviewed by Ede [1]. The great majority of 
work is based on the Schmidt-Beckman [2] formu- 
lation (herein referred to as "conventional formu- 
lation") according to which the non-dimensional flow 
features depend only on the Prandtl (Pr) and Grashof 
(Gr) (or Rayleigh Ra = GrPr) numbers. The conven- 
tional formulation is rarely questioned even when 
higher boundary-layer theories are developed [3]. Its 
range of validity has never been properly identified 
and, perhaps as a natural consequence, not enough 
attention has been paid to the question of the appro- 
priate modeling outside this range. 

This question has been recently addressed to by the 
senior author [4] for the particular case of the steady 
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l~u'ninar free-convection boundary layer due to a verti- 
cal impermeable fiat plate immersed in a perfect gas. 
The study was based on a rigorous order of magnitude 
analysis and on the concomitant application of the 
matched asymptotic expansion technique. The results 
shed a completely new light on free convection 
bot, ndary-laycr problems, revealing the need for 
"'revisiting" all of them and indicating the avenues 
along which further theoretical and experimental work 
should be done. 

To put the present work in the proper perspective 
some of the most relevant findings of the analysis 
performed in [4] will be summarized. 

Under the above mentioned restrictive hypotheses, 
the free convection problem exhibits five characteristic 
speeds: the Torricellian speed V o = (Ho) 12. the speeds 
V, = v.:H and V~ = ~ / H  related to diffusion of momen- 
tum and energy, and the two "thermal" speeds 
V, = ( R T , )  1.2 and V7 = (RAT) 1.2. The steady flow field 
thus depends, in general, upon four independent non- 
dimensional parameters which can be formed with 
these five characteristic speeds. Since for gases v:= - 
Olll  one such parameter, the Prandtl number 
P r  = ~.. V~. is of the order one and only the following 
other three parameters may have arbitrary orders of 
magnitude : 

1,; 2 I/.t2 , q A T H  3 
R,, = - :g , - ' - -  e r  = 

(1.1) 
M2 = v;-' H,~. vr  2 M- 

];:,: --- w L '  0 = i ,7 = } - 7  

The first parameter is the classical Rayleigh number. 
The choice of the other two is actually motivated by 
their physical meanings. The parameter 0 is a non- 
dimensional measure of the "driving force" and affects 
directly the density field: for 0<<1 the Boussin~sq 
approximation is applicable. The parameter M 2 is the 
Newtonian Mach number referred to the Torricellian 
speed and thus affects directly the pressure field. When 
both 0 << I and M 2 << 1 the proper formulation of a 
boundary-layer theory still depends on the relative 
order of magnitude of 0 and M 2 or, more precisely, 
on the order of magnitude of the Eckert number 
defined as 

7 - 1 M  2 
Ec = - = H#."c v A T, 

7 0 ' ' 

where 7 is the specific heat ratio. The two key points 
to be stressed are: 
(1) The conventional boundary-layer formulation is 
valid in the limit for Ec-- ,0  and presupposes that 
Ra >> 1. The same condition R a  >> I applies for E c  =- 

O(1). In the limit for Ec--*< the validity of a 
boundary-layer theory depends no longer on the value 
of the Rayleigh number, but, rather, on that of the 
number: 

92H 4 
E c R a  = - -  Pr .  

Cp T a 
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(2) The zeroth (and higher order) boundary-layer 
equations have different forms in each of the above 
three cases: Ec ---* 0; Ec -- O( 1): Ec ---, y_. The impli- 
cations of this state of affairs are of utmost importance 
as the following reasonings show. 

Let all other problem data be constant and consider 
what happens as AT --, 0. As this implies that Ec ---, .-c, 
deductions inferred from conventional boundary-layer 
theory are erroneous. Thus, for example, it is not true 
that at any given station the boundary layer thickens 
indefinitely and that, consequently, the boundary-layer 
approach should necessarily fail to be applicable below 
a certain minimum value of AT. 

The correct statements follow from point (1) above. 
When the number E c R a  is sufficiently large, a 
boundary-layer theory is applicable throughout the Ec 

range. Everything else being constant, as AT--, 0 the 
boundary layer at a given station does not thicken 
indefinitely but reaches, asymptotically, a value pro- 
portional to ( E c R a ) -  1 ,  which is constant since, appro- 
priately, E c R a  is independent of AT. 

Similar remarks apply for any property of the flow 
field such as mass flux in the boundary layer, wall 
shear stress, wall heat transfer and so on. 

The essence of the above-mentioned two key points 
pertains (with few appropriate modifications, if any) to 
all free convection problems. Hence, the research 
avenues to be pursued appear clear. For each specific 
problem the other two sets of boundary-layer equa- 
tions, for E c ~  O(1) and E c ~  :*_: should be derived 
and solved. Solutions of the set of equations for 
Ec-~ O(1) provide, for any flow feature, the fairing 
between the two different functional expressions ob- 
tained in the two limits E c ~  0 {as already available 
from the conventional theory) and E c - ,  ~.. These 
solutions will yield quantitative information on the 
Ec-rate of variation of the field features. Thus ultimately 
they will provide a quantitative assessment on the 
exact range of validity of the conventional solution 
(which may well turn out to be different features of 
the field) as well as corrections to be applied for Ec 
small. 

The present paper offers a first contribution in this 
direction by investigating the solutions of the laminar 
flat plate problem, over the entire Ec-range, for the 
case in which similarity prevails. 

In paragraph (2) the different sets of zeroth order 
boundary-layer equations are briefly derived both for 
completeness sake and to further elucidate a number 
of essential points. Similarity forms are discussed in 
paragraph (3): solutions are presented and analysed in 
paragraph (4). The main conclusions are reviewed and 
summarized in the last paragraph. 

2. B O U N D A R Y - L A Y E R  E Q U A T I O N S  

Only the zeroth order approximations for the outer 
and inner regions will be considered. The coordinate 
systems has the origin at the lower edge of the vertical 
plate with the x-axis pointing upward. The gas is taken 
to be perfect and bulk viscosity effects are neglected. 
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The following non-dimensional (asterisked) quan- 
tities are introduced: 

x = Hx*;  3' = lyHy*; p = po(x = O)p* 

p = po(X = O)p* ; u = I. V~u*; r = I, ly V~ v* 
(2.1) 

T =  A T T *  + T~: A T =  T(O,O)-  Ta= Tw(O)- T~ 

/~ = l~/a*: ,;. = ,;.~2". 

The scales 

V = l~ Va; I = I~.H (2.2) 

for vertical component of the velocity and for the 
horizontal distance from the plate are left for the 
moment unspecified since their appropriate expression 
depends on the order of magnitude of the Eckert 
number. The scale for the horizontal component of 
the velocity is fixed by the requirement that horizontal 
and vertical convection be of the same order of 
magnitude. 

The zeroth order outer solution (subscript e) de- 
scribes a quiescent isothermal ambient and is given by: 

u~* = t,~* = T,* = 0 
I2.3) 

p* = p* = e x p ( - M ' x  ). 

The equations for the zeroth order inner field can be 
written (upon neglecting terms of order Ir 2 or smaller 
and on accounting for the fact that, to within this 
approximation, p*(x*, y*) = p*(x*)): 

(p*U*)x. + (p'v*) r. = 0 

l ~ I  [M2OPr•I;z ] 
p ' T *  p*V*-V*u* * * = - ( ~ -  I (~ u,,.).l \ al.r/ l 
p . . =  2 2 O(Idy) (2.4) 

[ Raerl214~, 2 I C~- l)l~ , 
(;.*~,.*),,. = \ °M ~ ) p*v*-v*~r*  + - - 2 ~ 0  u*" 

Ecx," ] Prl~ ? - 1  + (~*u*u,*,.h. J 0 ? 

p*(l +0T*) = p* = exp ( -M2x  *) 

where 

V * ' V * =  * c~ * d 
u (3x-~+v 8y-~ 

and the numbers Ra, Pr and Ec are evaluated at the 
condition of the bulk fluid for x = 0. 

The fourth equation expresses the conservation of 
total energy, sum of enthalpy, kinetic and potential 
energies. The latter is given by ~p = gx = V02x and is 
referred to its value at x = 0. 

Equations (2.4) represent the zeroth order term of an 
asymptotic series expansion in terms of the small 
parameter r, = It. As this parameter is just the scale 
factor ly, its explicit expression will depend on the order 
of magnitude of the Eckert number. 

Further discussions will be restricted to the case in 
which M 2 << 1 and 0 << 1. These conditions imply the 
validity of the approximation p* =/~* = 2" = 1 so 
that the velocity field is solenoidal. The order of 
magnitude of the Eckert number determines how the 
pressure plus body force T* and thermal diffusion 
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Ty~, terms are balanced in the momentum and energy 
equations. The following three cases appear relevant: 

(1) Ec<<l;  (2) E c = O ( l ) ;  (3) Ec>>l. (2.5) 

In the first two cases momentum and energy balance 
require that (unless inessential constants of order one): 

I. Pr 
--M - -  = 1 ~  ~ 5 ~ = 1 .  

These relations determine l~ and ly and, consequently, 
the velocity and length scales and the expansion 
parameter which are given by: 

("gaT, t"2_  tRol,,, v - i. v~ = \ ~-q~--o J 
(2.6) 

I = lrH = H/(Ra)I/4; c = 1~, = (Ra) -1'4. 

The corresponding set of zeroth order boundary-layer 
equations is: 

Ux,+t3y, = 0 

1 
- -  V * '  V ' u *  = u*. r. + T* 
Pr 

(2.7) 
V*" V*T* + Ecu* = Tfly. 

p * =  1. 

The boundary conditions pertinent to an impermeable 
plate with non-uniform temperature are: 

u*(x*, O) = v*(x*, O) = 0 

lim u*(x*, y*) = lira T*(x*, y*) = 0 (2.8) 

T*(x*,O) = W*(x*); [W*(0)= i] .  

The conventional formulation is valid only when 
Ec << 1 [first case in (2.5)] and is formally recovered 
from equations (2.7) by setting Ec = O. 

When Ec - 0(1) [second case in (2.5)] the potential 
energy is of the same order as the enthalpy and its 
contribution to the energy conservation equation can- 
not be neglected. The term Ecu* introduces a stronger 
coupling between velocity and temperature fields. It 
represents the rate of work done by the body force on 
the particle during its motion, equal to minus the time 
rate of change of its potential energy. The relevance 
of this term is inequivocally established when the total 
energy conservation equation is used. When, instead, 
one uses the balance equation for the internal energy, 
particular care must be exercised in handling the 
reversible work term pV-V. It is speculated that one 
of the reasons why the system (2.7) has never been 
considered before is because the internal energy balance 
equation is usually employed and, for 0 << 1, the pV. V 
term is much too hurriedly eliminated on the ground 
that V' V = 0. This inference is valid only for Ec << 1. 
The correct reasoning to be applied in the other cases 
is discussed in [4] and, obviously, leads to the same 
set of equations (2.7). 

In the third case (Ec >> 1) the potential energy is 
more relevant than both the enthalpy and the kinetic 
energy so that thermal diffusion can only be balanced 
by the rate of work done by the body force. 
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As equations (2.4) show, the appropriate balancing 
requires that : 

Eclfl~ ( RaPr  ] ' 2 I. [ l'r i '2  
M \, 0 ] 1: MI~ \ ( IRa]  1 (2.9) 

from which the following new expressions i/', I and ~ for 
the scales and the expansion parameter are obtained: 

V = A T  = E c  121/ 
p7  

H 
1-- = E ( . '  141: i = ( E c R a )  1 4 = E c - l ' h : .  

(EcRa) 14 

The pertinent equations are: 

ii,*, + (~. = 0 

m*.':" + T* = 0 

T,~. - z i *  = 0 

where a bar denotes quantities referred to the new 
scales (2.9). Boundary conditions are as in equation 
(2.8) in terms of barred quantities. Equations for Ec >> 1 
were incompletely stated in [4] since only the par- 
ticular case ~=* = 0 was reported. All convection terms 
have disappeared and gravitational effects are solely 
balanced by diffusion in both momentum and energy 
equation. The /:* tield is uncoupled from the ti* and 
T* fields. 

As equations (2.9) show. the set of equations (2.10) 
can be obtained from the set (2.7) by performing the 
following changes in ve]ocity and length scales: 

~:* =(EC)I4v* :  ~* =(Ec}l2 / l* :  /=* =(Ec)34r  * (2.11) 

and by neglecting terms of order (Ec) ~ or smaller. 
As mentioned in the introduction, the difference in 

the velocity and length scales for the two limits Ec --, 0 
and Ec--* :~ imply different functional behaviours of 
the flow properties, the fairing being afforded by the 
solutions of equations (2.71 for different values of Ec. 
Some further elaboration of this point may be appro- 
priate. 

Consider for instance the expressions [2.6) and (2.9) 
for the velocity scale which will be rewritten as: 

(( )' 
R ~ , , I  : Ec ~< 0(11 (2.12) 

\7 i- T,, : Ec >> 1. {2.13) 

At a given station, the maximum values of the vertical 
component of the velocity referred to I / (Pr/RT,)  ~z is 
proportional to the values given by equations (2.12) 
and (2.13) in the limits for Ec --* 0 and Ec ---, 7: respect- 
ively. Hence, everything else being constant, this maxi- 
mum value of the upward velocity tends to be 
proportional to (AT/T,) ~ : as Ec --, 0 (i.e. for sufficiently 
large values of AT/T,) as indeed predicted by the con- 
ventional theory, whereas it tends to be proportional 
to AT/To as Ec ---, oc (thus. in particular, it goes to zero 
as AT/T,). How rapidly it goes from one functional 
dependence to the other can only be assessed by 
actually solving the system of equations (2.7). 

l . t  IGI (JER ~,RDO N.M'OLITANO. GIOVANNI M,\RI,\ CARl OMAGN() arid P-xol t) ½'l(i~) 

(2.10) 

Similarly, everything else being constant, the maxi- 
mum value of the vertical component of the velocity. 
at a given station, tends to become proportional to 
(lhd..RT~,)~ 2 as H~.I RT,  tends to zero (Ec .--, 0) whereas 
it tends to a constant value, independent of t t~ lR 7-,, 
as this parameter increases (Ec ~ .,_ ). 

Similar remarks can be made with respect to any 
other tield property. 

Let: 

3. SIMII.ARITY FORMS OF SOLUTIONS 

5, = .v* + (': t l = .v* cS(x*) 

T*(x*.  y*)  = fl(O~.lOl) 

qJ*ix*, y*) = e{~.).lOl) (3.1) 

C 
.*=~*.=  . t"  # 

etl d6 de 
, . *  = - - -  ; -  f '  - t 

where C is an arbitrar.,, constant. ~b* is the non- 
dimensional stream function. ~I the similar i ty variable, 
primes denote differentiation with respect to q and 
[:;(~), e(~), 6(~) are scale factors. 

The definit ions (3.]) are appropriate for the analysis 
of system (2.7). For that of system (2.10) the same 
definit ions (3.1) apply in terms of barred quantit ies 
(e.g. q = .i:*..'6; i i* = qf'01)/~5 and so on) wi th:  

/}=f l :  ~ = E c  1"~6: e = E c  3%. (3.2) 

Appropriate substitutions into equations (2.7) and 
(2.10) lead to the following sets of ordinary differential 
equations: 

( ' .1 ' " +  ~ r r l a l f / " - u 2 1 " - )  + u351 = 0 (3.3a) 

k ,q" + a lJ.q' - a4.! '.q - as Ee l '  = 0 

J .f"' + ii.~ ~l = 0 
(3.3b) 

[ .q"-  i~51' = 0. 

Similarity conditions are expressed by the constancy 
of the a~'s and hi's respectively defined as: 

I de ., d e ,4~fl ., = a ; " '  = - (  / : . 3  . . . . . .  

. - d5,\.61 e (3.4a} 

&, dfl 6e 

L a" fl dg" "~ /~ 

153/~ ~1.' 
a 3 = -  : /)~ = - .  (3.4b) ¢' // 

The similarity condition on a~ is not required in the 
conventional formulation (Ec = 0) and equations (3.4a) 
reduce then to the set solved by Sparrow and Gregg 
[5]. Conversely, for Ec>> 1 only two similarity condi- 
tions need to be imposed. For Ec = O(1 ) the additional 
condition on as restricts the classes of similarity solu- 
tions to the linear or constant wall temperature 
distributions. If//' is the constant rate of change of wall 
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temperature, the general solutions of equations (3.4a) 
are given, when suitably normalized, by 

f l ( O = l + f l  '& 6 = E c - t ' 4 ;  e (O= l+fl '~ p 
. Ec3; a Ec3i 4 (3.5) 

and the corresponding form of equations (3.3a) reads: 

{ j.,,, + (g,,_ ,.,2) +.q = o  

, (3.6) 
R 

,q" + ~ ( f q ' - f i g )  - f '  = O. 

For Ec >>1 the reduced number of similarity condi- 
tions to be imposed enlarges the classes of similarity 
solutions to include any distribution of wall tempera- 
ture. Indeed the general (normalized) solution of 
equations (3.4b)is simply: 

= 1; fl(~) = #(0. (3.7) 

The corresponding equations read : 

tf '"+g = 0 
g " - f '  = 0. (3.8) Tw(0) - T~ 

In both cases the boundary conditions are: 

t f (O)= i f (O)=O;  g(O)=l  
l i r a  f '  = lim ,q = O. (3.9) 

Equations (3.6) can be given in several alternative 
forms by subjecting them to appropriate changes in the 
dependent and independent variables. All of them are 
equivalent when Ec - 0(1) but they would correspond 
to sets of velocity and length scales of different orders 
of magnitude when Ec is not of order one. Substitution 
of equations (3.5) into equation (3.1) shows that, for 
Ec >> 1, the scales corresponding to equations (3.6) are 
just the scales 1 and V appropriate to the limiting case 
Ec--, oo. This is further evidenced by the fact that 
equations (3.8), holding for Ec >> 1, can be formally 
obtained from equations (3.6) by performing on them 
the limit for Ec --, ~ .  

Among all alternate forms of equations (3.6) a 
relevant role is played by the one which corresponds 
to the scales I and V appropriate to the other limit for 
E¢ ---, O. Such a form obtained, as clearly suggested by 
equations (2.11), when the following changes are 
performed: 

( E c / 3 4  
J(r/) = \/~7] F(a) 

.q01) = G(a) (3.10) 

' Ec " 1,'4 

The new form of equations (3.6) reads : 

F ' " + I ( F F , , _ F ' Z ) + G = O  

F F Ec (3.11) 
G"+ G ' - ' G - f f F ' = O  

and they are subject to the same type of boundary 
conditions given by equations (3.9). As a check, notice 
that equations (3.11) reduce, in the limit for Ec--*O, 
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to the conventional equations holding for linearly 
varying wall temperature. Equations (3.6) and (3.11) 
correspond to two different representations of the field 
variables which, together, cover the entire range of Ec 
from 0 to .7:_. These representations are obtained by 
combining equations (3.5) with equations (3.1), (2.6) 
and (2.1) for one representation and by further per- 
forming the transformation (3.10) for the other one. 
The result is: 

u(x, y) = ~I- flF' a. Pr, 

:t iRa)"2 ( i f )  
= f i  Ei" flY' ~l" Pr' Ec 

~t I R a  ~ 1.4 , I E c l  

( 5) kl \k~c3/I f f f  rl" Pr, (3.12) 

x = Hx* = H ( ~ - G )  

Ha Hq 

y - (fl,Ra)l.. 4 - (EcRajV4 

where the dependence of the similarity functions on the 
parameter appearing in the corresponding equation is 
explicited out. 

The more relevant features of the subject-similar 
flow fields can now be discussed. As for the general 
case, what matters is the relative importance, in the 
energy conservation equation, of the contributions due 
to convection and time rate of work done by the body 
force. 

The point of qualifying the similar fields is that the 
latter contribution is proportional to Ec and the former 
to B' (as a consequence of the constraints imposed by 
similarity conditions). 

Hence, as equations (3.12) show, Ec and fl' play a 
"symmetrical role'" in the definitions of the scale factors 
whereas the similarity profiles depend upon Ec and fl' 
only through their ratio Ec' = Ec/fl'. 

The different scale factors in the two representations 
of the independent and dependent variables are ob- 
tained by interchanging Ec and fl' wherever they appear 
combined with the Rayleigh number Ra (which is the 
key scale parameter). 

By their very nature, the similarity functions F, G,f.,q 
cannot depend on overall quantities such as H and AT. 
This is appropriately reflected by their dependence on 
the ratio Ec'. This ratio can indeed be interpreted as 
a "differential" Eckert number for, when the appro- 
priate substitutions are made, one gets: 

E c ' =  Ec/f f  - g d x  (3.13) 
cpdT~" 

The different roles played by Ec and fl' in the scale 
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laclors and in the similarity functions are flmdamental 
m analysing the limits Ril Ec' --, 0 and Fc' ~ s.. I"or 
IF finite and Ec -,  0 lhe first representation m equation 
13.121 is appropriate. In this limit fi' disappears from 
tile differential equations {3.11) ~ hich reduce to those 
solved by Sparrow and Gregg [5]. One tkus recmers 
the results of conventional theory for a linear distri- 
bution of wall temperature since the contribution due 
to body force power can be neglected in the energy 
conservation equation. l k e  wall temperature gradient 
/~' enters only in the detinition of lhc scales and is 
tile "'controlling" factor in determining the limits of 
applicability of a boundary-layer theory. I"or the sub- 
.ject similar l]ow field, these limits depend on lkc 
vahie of the parameter: 

q t l  a d'l ,. 
f l 'Ra . . . . . . .  Pr [3.14) 

7,', v 2 dx 

which as/::c' can be interpreted as a "'differential" form 
of the Rayleigh number. Conversely, for fi'---, 0 and 
Ec finite, Ec'---* > and the contributions due to the 
convection terms can be neglected in both the momen- 
tum and energy equations. The representation to be 
used in investigating this limit is the second one. The 
factor "'controlling" the different scales is Ec. In par- 
ticular: the thickness of the boundary layer depends 
on the value of EcRa which, as already pointed out. 
is independent of AT. For t-c'- ,  :~. equations t3.6) 
reduce to equations 13.8): the similarity profiles are 
unique, their dependence on Pr, fl'. Ec having dis- 
appeared. Thus, in particular, the similarity' profiles 
for a constant wall temperature fl' --- 0 and uny non- 
nullified value of t:'c are identical to the simihtritv 
profiles prevailing for any wall temperature distribution 
in the limit for t5c-+ r~. The differences are felt only 
in the length, velocity and temperature scales as given 
by' the second representation in equations (3.12) (notice. 
in particular, that for a constant wall temperature the 
r-component scale vanishes identically). 

The last relevant case to be discussed is when both 
/ f -~  0 and Ec .+ 0 with l-c' = I..t fl' finite. Either one 
of the representations 13.12t is appropriate: the t ~ o  

sets of scales are essentially of the same order. The 
similar profiles depend on the particular Itinite) ~alue 
of Ec' and, consequently, in this range the conventional 
theory gives erroneous resuhs. On the light of the 
remarks previously made on the interpretation of fl' 
and Ec the situation appears to be exactly the same 
;is that discussed, in the preceding paragraph, for 
general non-similar flow fields. 

The results of the conventional theory, as given by 
the functions F(~r, Pr, Ot, G(o, Pr. 0), are valid only' for 
fi'>> Ec and thus cannot be extrapolated down to 
/~' = O. No matter how small Ec is. as 1~' decreases one 
must eventually' switch from the first to the second 
representation. This for instance implies that the 
boundary layer does not thicken indefinitely but 
reaches asymptotically a value proportional to 
H,,1EcRa) ~ "~ (independent offl'l, and that the scale for 
the u-component of the velocity remains finite as 
[Y -+ 0. In other and more general words, as//: --* O, I-c 

~J \R I . \  (. "&RI ( ) \1  \(  ;NI ) [llltl I ) \¢ ~11 I \ I( i{ ) 

becomes the conlrol l ing l,, : to] for the scale~, and tkc 
,,imilar prol i lo,  lend lowaM Ihe "'utm, crsal'" profiles 
deiincd by Cqtl;.llkHls 13.NI. 

T,.,.o t:loscly rclato.I qucsti,.ms need further in,,csti- 
gatic, tls an,.l ,a ill be ,.ml,. briel]x menlit:,rlcd t'lcrc. The 
lil 'M one Ct)llCCllls the con ln lU la l i \  it). ( i f  thc opera t ions  
(il l imit  for /g< >It and i i i i  i inponit ion of similari ty 
conditions, whick arc performed m tkc abo,,e order ill 
Ike ctmvcntional theor,,, and in [he reversed older in 
tkc prcsellt appro;.lch. Tile t~o  t+pcrcttions COllllllUtC 
only in lhe case of l inear ~ all temperature distr ibut ion 
albeit, as seen. the fi'-range e l  appl icabi l i ly  of the 
results of con~.enlional lkeol~, is bounded from bclo~a. 

The prescnt investigation suggcsls tk;.lt an analogous 
lirnilation kolds for the olhcr clas,,e,, of simiku solu- 
lions gi~.cn bx. the con\Clllional lhcofy. Tkcre UlUSl he 
a parameter ,~kich nlc,lsures Ihc rclatixe inlporl:.ulcc 
o[con\ect ion telIlls and results o l  Ct)ll~,Clllion,~ll IhcoFv 
are applicable only ~ hen thin paranlelcr is nluch larger 
Ikan lTC. Outside this rtu'lgc, lhc con~cnlional fornltl- 
lal ion is no longer',  alid and, m addit iou, ihc Ilmv lieM 
is no longer similar. To in~eslig;.lle these ca~cs I and ~! 
m equal ions 13.1l musl bc considered also functions 
of ,7 arid the appropr ia lc anal',sis i,, Io be perforined 
on the partial differential equations restlhing froln SLick 
substilution is le  lhs original sx stem 12.4). 

lkc constallt wail tenlpel{itule llceds spcci;.li mention 
since it is a somewhat "'singular" case. Indeed, strictly' 
speak inc. the conventhmal similar :,olution applies only 
when both dTi, dx and #.u arc exactly /ere. A totally 
different simihu solution Inauncl~ the one exhibiting 
the universal profilesi is obtained for d/{,, dx exactly 
zero w h e n  /-.~( is ttifferent from zero. no matter how 
small. This solution is \,ilkl onh. lbr EcRa sufficiently 
large: hence, for Ec small, it ~ill pl-ex all. if at all, in a 
region far a~.a~ flom lhc leading edge. Thus tkc prob- 
lem to bc invc, , l igaicd qt l ; . i l l i i la l i \e l> is the cnl iD. and 
nat t i re  o f  ti le non-similarity ct~ricclion~, \~hich mtlSt 
be pcrt;,~rnled on the con~u'nlioilal conslanl ~al l  lem- 
peralure similarity solul ion Ibr I-< • I but 11ol null. 

Phe second question refer,, lo the linear ~al l  tem- 
perature distribution and cono,.'rns the sigil of fl'. The 
lirst rcpreserltation is applicahle ;is previously given 
only for If' > O. For / /  < () one lnusl replace fl' ~i th 
(.--IF) ill equations 13.1Ill and change ike sign of the 

convec t ion  terms in equat ion> I:  4. I II. S im i la r  soh l t ions 
for f i ' <  0 pose. kov, CVel,-.,t)nlc problcnls x~ith rcg.:ird 
to the range of xalues of fi '!if ally l for x~hich solutions 

i satist}ing the prescribed I~otllldaiy. condit ions exist. 
Similar solutions of the con\cl~tional boundar) -k l )¢r  
equalions {1:< :- ()1 liave been gi~cn only for fl" ' II hut 

no explicit proof  seem,,, to ha~c becil published con- 
cernmg tltcir non-existence lb i  /; -" tl. ( )n Ihe olher 
hand, preliminary inxc,,tigatit,n,, b) lhe pie,,elll aulhor.s 
ha~c shown tkal soltlli()llS do exist Itu fi' -:: t) {ind iI:,(• 
linitc. The i l la l ler  clearly iiccdn Ii lrthef studies. 

4. NI'%III.'*,R PR()FII Ii~ 

4.1. Univer.~ul pr~t/Ih'.s 
The solution of system 13.7) ~ ith file boundary con- 
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ditions (3.8)can be given in closed form and reads: 

f ( r  I, Pr, Ec', = ~c ) 

l /exp( .,"2 I sm- 2 + cos = I - ,  l 
v'2/ \ ,: ]L ,J ,/'21 

(4.1) 
,qlr/, Pr, Ec' = zc) = exp( - --q- I cos--q-. 

\ x/2] V'2 

Substitution in the second representation (3.12) for the 
field variables leads to the following expressions for 
the wall shear stress z,, and the local Nusselt num- 
ber Nu : 

pC~fl Ra 3'* 
r~. = ( /2 )H 2 Eel , ,  

(4.2) 

N u =  A r k , ~ y j , . = o = ( v , } - ) - h ~ c t ~ a ~  . • , 

portional to (- / / ' ) .  Mass exchange between the bound- 
ary layer and the bulk fluid depends on the sign of the 
rate of change of wall temperature. For constant wall 
temperature (fl' = 0) the boundary layer is isolated and 
the total upward mass flux in it is constant. In the 
region where fl' > 0 (increasing wall temperature) mass 
is being entrained in the boundary layer. The converse 
occurs in regions where the wall temperature decreases: 
mass flows from the boundary layer into the bulk 
fluid. This behaviour of the subject similarity flow 
fields is readily explained when noticing that the total 
upward mass flux through any section is, as a simple 
calculation shows, proportional to the local tempera- 
ture difference T,,.(x)- T~. Hence, when T, A x ) -  T, in- 
creases with x, mass must be entrained in the boundary 
layer from the outer fluid, and vice versa. 
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FIG. 1. Universal velocity components and temperature profiles for Ec = 7;. 
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The universal velocity and temperature profiles are 
plotted in Fig. 1 against ~//x/2. 

In the upper two thirds of the (constant) boundary- 
layer thickness, the temperature is less than the bulk 
temperature. This is so because, as repeatedly men- 
tioned, for Ec' >> 1, convection effects are negligible, and 
pressure plus body force terms in the momentum 
equation are balanced only by the resultant of the 
viscous stresses. Hence, when the latter changes sign 
(namely at the inflection point of the u-profile) so does 
the temperature difference (T-To). For exactly the 
same reason near the boundary-layer outer edge there 
is a region (above the inflection point of the temperature 
profile) where there is a small downward velocity. The 
v-component of the velocity at the outer edge is pro- 

4.2. Linear wall temperature distribution 
Equations (3.6) have been solved numerically with 

the automatic initial-value technique developed by 
Nachtsheims and Swigert [6] for several values of the 
Prandtl number Pr and of the parameter Ec '=  
Ee/fl' > O. 

Results will be presented and discussed only for 
Pr = 0.72 since the Prandtl number, within its range 
of values appropriate to gases, does not affect appreci- 
ably the main features. 

Velocity and temperature profiles for Pr = 0.72 are 
shown in Figs. 2-7. To exhibit more vividly the 
dependence of the similar profiles on the parameter 
Ec', the representation in terms of F, F', G has been 
used for 0 ~< Ec' ~< 1 (Figs. 2-4), and that in terms of 
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t. I(;. 3. Horizontal  velocity component  profiles for Pr = 0.72, E('.'/3' ~< I and linearly varying wall tempera turc  
(Ec [~' ~ 0 corresponds  to conventional  formulation). 

l . . f ' ,  a n d  9 has  been  used  for 1 ~< E(" ~< -J. (Figs.  5--7). 
C o m p a r i s o n  b e t w e e n  the  t w o  sets  o f  f igures  is m a d e  

eas ier  if e q u a t i o n s  (3.12) arc  r ewr i t t en  as:  

~ i, ./s' / `2 
U(.x. )') = ,z~ \R( IJ  u = l"'(tr, Pr, E(") 

= (Ec')-12./"(~ I, Pr. E(") 

H t" 
- I / '(x,  y )  . . . . . . . . . . . .  F ( a ,  I ) r ,  E c ' )  (Ra[l') I 

= (E("I 3 ~]'(tl, Pr, E(") 14.3b 

7 -  7~ T -  1;, 
. . . . . . .  G(cr, Pr .  Ec')  /~-[~.(6i Z 7;] = I;,.(.,-)-- t ;  

= (t(rl, Pr, Ec") 

= (Ec')  - l  4~ 1. 

Not ice ,  in pa r t i cu la r ,  tha t  b o t h  G ~md ~t g ive  the  t em-  
p e r a t u r e  d i f fe rence  in t e r m s  of  the  " loca l "  wall tern- 
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Fit;. 7. Temperature profiles for Pr = 0.72, Ec:fl' t> I and linearly ~.arying wall temperature 
IEc.fl' = -J. corresponds to universal profilel. 

perature difference T.,(x) - T. and that the two sets of 
profiles coincide for Ec' = 1. 

The profiles for Ec' = 0 are the "'conventional" pro- 
files given by Sparrow and Gregg. Thc effects of Ec' 
in the range (0. 1) are seen to be quite sizeable and 
comparatively of the same order for both velocity and 
temperature similar profiles. As Ec' increases the point 
where the u-component obtains a maximum moves 
closer to the wall and, quite expectedly, this maximum 
value decreases. For E c ' =  I it is 70% of the conven- 
tional value. Similarly./-(.:6) decreases as Ec' increases 
and for Ec' = I it is equal to 53,° of the conventional 
value. 

As Ec' increases, the values of the temperature 
similarity profile decreases and. consequently, the tem- 
perature normal gradient at the wall increases in 
absolute value. This is expected since, as Ec'  increases. 
the rate of change of a particle's potential energy 
becomes increasingly more important and thus the 
energy transferred from the plate to the boundary layer 
must be spent not only to raise the particle's tempera- 
ture but also its potential energy. The increase in 
energy transmitted by the plate will eventually become 
insufficient to perform both actions throughout the 
boundary layer so that, as Ec'  increases, a percentage 
of the outer boundary will eventually have a tempera- 
ture smaller than the bulk temperature. This outer 
rcgion is already measurable for Ec' = 1. 

Figures 5 .7 show that the influence of Ec' on the 
f u n c t i o n s . l , f ' ,  .q is comparatively smallcr. This implies 
that most of its influence on u. t. T is accounted for 
by the factorization represented in equations (3.12). 
Near the plate: the temperature tield is substantially 
independent of Ec' for Ec' > 1 ; 1-ig. 7 shows that the 
.q-profiles for 1 ~ Ec' <~ >'. are practically indistinguish- 
able in that region. 

The influence of Ec'  on the wall shear stress and on 
the Nusselt number is shown in Figs. 8 and 9 where 
the quantities ?,,. and :~u, defined by: 

_ H-'  { fl' / 1"~ 
' "  = F,;13 \ r . " /  ~" = F"(O. e~. r,.'~ 

= (Ec')-1 '~.1""{0, Pr, Ec') 

t t  
= ' ' "4Nu - G'(O, Pr. Ec') • '.Vu fi~ (13 Ra)  = 

= - Ec'q'(O, Pr.  Ec') 

to 1- . . . . . . . . . . . . . . . . . . . . . . .  q 
?,, 1 O.~ . . . . . . . . . . . . . .  ,, . . . . . . . . . . . .  

~w -.717 ' I 

0.6~- \ ~". . 

._ . . ~ o,! 
I 

0 . 2  I 
1o -= 1o'' m ° 1o I &/,w 10 z 

F'IG. 8. Dimensionless shear stress at the wall vs the differ- 
ential Eckert number Ec.:fl' for Pr = 0.72. 
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fq(;. 9. Local Nusselt number vs the differential Eckert 
number Ec:fl" for Pr = 0.72. 

arc plotted against Ec'. The two limiting bchaviours 
are also shown. For Ec' ~ 0, -?,. and Nu tend to values 
depending only on the Prandtl number. This depen- 
dence is too weak to be shown on the diagrams. For 
Ec' --* .~, -?,,and N u  tend to be proportional to (Ec') i a 
and (Ec')  t''* respectively. The rate of deviation from the 
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limiting behaviours is larger for Ec'--*0 than for 
Ec'--, oc and this difference is more marked for Nu. 
Indeed, as Figs. 8 and 9 show, for E c ' =  1 the two 
limiting solutions (for Ec ' - - ,0  and Ec'--* ~c) yield 
practically the same value for ~,,., whereas for ,~u, the 
value given by the limiting solution for Ec'--, zr~ is 
much closer to the exact value than that given by the 
other limiting solution. In other words, for low values 
of Ec', :~u is more sensitive than z~, to changes in Ec'. 

All quantitative results presented in this paragraph 
show that the results given by the conventional theory 
for linearly varying wall temperature can be practi- 
cally accepted up to values of Ec' between 0.05 and 
0.1 [i.e. for [/'>~ (0.05-0.11Ec]. The errors thus made 
vary according to the field property being considered. 
For Ec' = 0.1 the maximum value of U is overestimated 
by 4.7',',o, f,. is overestimated by 2.4',,, and .7~'u is under- 
estimated by 4.3,,,. 

5. CON('I.t:DING REMARKS 

Similar solutions for the laminar fiat plate free con- 
vection problems throughout the entire Ec-range have 
been investigated. Some of the most important con- 
clusions are now reviewed and summarized. 

The Eckert number measures the relative importance 
between potential energy and enthalpy of a particle 
(static interpretation) or between the power associated 
with body force and enthalpy convection (dynamic 
interpretation) and plays a relevant role in the char- 
acterization of similar flow fields. 

When Ec is sufficiently large for the contribution of 
convection terms to be negligible (i.e. in the limit for 
Ec--, ~) ,  the number of similarity constraints to be 
imposed is minimum and any wall temperature dis- 
tribution leads to similar fields. The similarity variable 
is independent of x: the similarity profiles are 
"universal" (i.e. do not depend on any parameter) and 
are given in closed form. These similar fields represent 
the x-wise asymptotic solutions to which any fiat plate 
problem will eventually tend, provided: Ec is suf- 
ficiently large for convective terms to be negligible, 
EcRu is sufficiently large for the boundary-layer I. 
approximation to be applicable and the flow remains 
laminar. When Ec is sufficiently small for the con- 
tribution of potential energy to be negligible (i.e. in 2. 
limit for Ec--*0) the zeroth order boundary-layer 
equations are those given by the conventional theory. 
The number of similarity constraints is intermediate 3. 
and, as well known, similar solutions prevail for power 

4. law, and exponential distributions of wall temperature. 
When non a priori assumption is made on the order 

of magnitude of Ec similarity constraints are to be 5. 
imposed on all terms contributing to momentum 
balance and total energy-conservation and thus the 
class of similar solutions result the  most limited. 6. 
Similarity flow fields are obtainable only when the wall 
temperature varies linearly (or. in particular, is con- 
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stant). The similarity variable is independent of the 
x-coordinate; the similarity functions depend on the 
Prandtl number and on the ratio E' -- Ec/fl' where fl' 
is the constant wall temperature gradient. Velocity and 
length scales are controlled by fl' (resp. Ec) in the limit 
for Ec --, 0 (resp. fl' --* 0) and Ec' ~ 0 (resp. Ec' ---, zc). 
For f l ' =  0 and any non-vanishing value of Ec the 
similarity profiles coincide with the above-mentioned 
universal profiles. For Ec' = 0. fl' # 0 the conventional 
similarity solution is recovered. 

The linear wall temperature distribution with posi- 
tive gradient is the only distribution for which the 
flow field is similar throughout the Ec range. The range 
of validity of the conventional solution for linear wall 
temperature is bounded from below in terms of the 
parameter Ec' = Ec'.'fl'. Numerical solutions of the more 
accurate set of equations show that the practical lower 
limit for Ec' is between 0.05 and 0.1 depending on the 
field property being considered. This implies that con- 
ventional solutions cannot be used for values of the 
non-dimensional temperature gradient [/' smaller than 
(0.05--0.1 ) Ec. 

In all other cases flow fields are not similar through- 
out the Ec range. Results of the present analysis would 
indicate that all other conventional similarity solutions 
should have their range of validity bounded from below 
in a manner analogous to that found for the linear 
wall temperature. 

This aspect will be treated extensively elsewhere 
since the corrections to be made to the conventional 
theory are no longer in similar form. The most striking 
example is given by the constant wall temperature case 
for which the flow field is strikingly similar only when 
Ec is exactly zero. 

Subject of future investigation will also be the case 
of linearly decreasing wall temperature (/3' < 0). Results 
of a preliminary analysis have shown that, contrary to 
what seems to be the case for the conventional theory, 
similar solutions do exist for ff < 0 and Ec finite. 
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NOUVEI.I.ES CLASSES DE SOLUFIONS EN SIMILITUDE POUR LES 
PROBLEMES DE CONVECTION NATI!RELLE LAMINAIRE 

Resume Commc I'a montre lc premier auteur, la formulation exacte dc la th,korie dc la touche limitc 
cn convection naturelle depend dc I'ordre de grandeur du nombre d'Eckert ddfini par tic = I t  q . C ,  AT. 
la th6orie conventionnelle 6tant valable /t la limite Ec--* 0. L.e prdsent article examine los solutions du 
probleme de la plaquc plane laminairc, sur tout lc domainc de variation dc Ec. dans Iccas  oil existe 
une similitude. 

On montre quc pour Ec =- O11) les solutions en similitude sont obtenucs pour unc tcmp,,?rature dc 
paroi variant lin,Sairemcnt (en particulicr pour une temperature eonstante) tandis qu'it la limite Ec ~ 
route distribution de temperature parietale conduit i~ des solutions en similitude. 

Les profils en similitude pour Ec ~ O(I) dependent du nombrc de Prandtl et du rapport I E~..ff) o f f / f  
cst Ic gradient constant de temp6rature/I la paroi. Les profils en similitude pour Ec ~ -/_ sont uni',ersels 
en cc sens qu'il ne dependent d'aucun param6tre, kes profils universcls sont compl~ztcment ddtermines. 

Des solutions numt?riques pour Pr = 0.72 ct plusieurs valeurs de (Ec. f f )  sont present,.?es ct analvsdes 
en tcrmcs de profils de vitcsse et de temperature, de tension de cisaillement pari6tal et du hombre de 
Nusselt. L'articlc montrc en particulier que les resultats dc la th6oric elassiquc ne peuvent ~tre utilisds 

pour [f infdrieur ",) (0.05 0.1) Ec. 

NEUE GRUPPEN VON AHNLICHKEITSLOSUNGEN F~R PROBLEME 
DER LAMINAREN. FREIEN KONVEKTION 

Ztmammenf~sstmg---Wie von den Autoren frtiher gezeigt worden ist, hblngt die geeignete Formulierung 
der Grenzschichttheorie f/Jr die freie Konvektion yon der Gr6Benordnung der Eckert-Zahl Ec = H g / c ~ A T  
ab, wobei die konventionelle Theorie fiir den Grenzfall Ec --* 0 gi.iltig ist. Die vorliegende Arbeit untersucht 
unter Voraussetzung der ,~hnlichkeit die L6sungen des laminaren Problems der ebenen Platte fiber den 
gesamten Bereich der Ec-Zahlen. 

Es wird gezeigt, dab ffir Ec = 0(1) ,g, hnlichkeitsl6sungen for linear ver~inderliche Wandtemperaturen 
(im speziellen konstante Wandtemperaturen) m6glich sind, w~ihrend, f/Jr Ec --* .-.c_ jede Wandtemperatur- 
verteilung zu ,~hnlichkeitsl6sungen ftihrt. 

,~hnliche Profile fiir E c =  0(1) h/ingen yon der Prandtl-Zahl und dem Verhg, lmis (Ec..ffl ab, wobei ff 
der konstante Gradient der Wandtemperatur ist. ,g, hnliche Profile ftir Ec ---* ~c sind insofern universell, 
als sie nicht yon anderen Parametern abh~ingen. Universelle Profile werden in geschlossener Form 
angegeben. 

Fiir Pr = 0,72 und mehrere Werte von [Ec..[t') werden numerische L6sungen angegeben und anhand 
yon Geschwindigkeits- und Temp~iaturprofilen, yon Wandschubspannungen und Nusselt-Zahlen 
analysiert. Insbesondere wird gezeigt, dab die Ergebnisse der konvektionellen Theorie f~r ff-Werte kleiner 

als (0,05 bis 0,11. Ec nicht verwendet werden k6nnen. 

t lOBblE KSIACCbl ABTOMO2I, E- lb l tb lX PEIIIEHIdlTI 3A,21,Aut 
,"IAMHFIAPHOITI CBOBO~HOIFI KOIIBI--KIII|H 

AnnorauM~ - -  Ka~ noKa3aHo nepablM aaTopoM, npaamqbHaa qbopMy:IrtpoaKa teopHn norpaHa~noro 
c.aoa npH CaOOO.atiO,q KOHBeKUHn 3aancnr or  nopflaKa ae.lHtlHnbl ~nc.aa ~)KKepta, onpe~e.qsemoro 
•ar Ec Hg/cp AT,  nprt,tem o6menpHHavaa TeopHa aa:taetcn crlpaaea+aHao~ a npe,aene Ec----0. 
B nactoame~ c ta tbe  pacc:vmtpnaalotca npenMymectaeHrm aatoMo.ae:lbHble petuerin~ 3a.aa,m o 
:m.~+nHapHOM o6teKaHrtrt n.,iocKo~ n;lactrtnbl ~t.m turtpoKoro sanana3ona H3MeHeHna ~Hcna Ec. 
floKa3aHO, qro npH E c . - 0 ( 1 )  aatoMoaenbnble peLueHHa MO~HO nonyur~tr, n.Ta :mHeflno H3menfl- 
rome~icfl teMnepatypb~ CTeHKH (n uact~ocTm nOCTOaHHO~), a to  apeMfl KaK npH Ec---~_ mo6oe 
pacnpene.~e~e temnepatypb~ c x e ~ a  np~ao~nt  ~ a a t o M o a e : ~ m  p e m e ~ a m .  Aatomonenbn~e  

HOCTOflHHblH r p a ~ e H t  teMnepatypb! CIeH~. ABTOMO~qe.qbHble flpO~H.rlH IlpH FC.-* "£ yn~aep- 
ca21bHbl, raK gaK He 3aBHCI1T HIt OT O;'IHOIO H3 napaMeTpOB. YHHBepcaJlbHble rlpogbH.'lH ~.aHbt B 
3aM~HyTOM aH,ae. Flpe.actaa.neHb~ HHc:~eHHb~e petueHt~a .qnfl c.ay,~a~ P r  0,72 n Hec~o,'tb~:nx 3Ha,leH~a~ 
(Ec.'~'), a r a ~ e  Hx aHa.mB c DOMOLLIbtO npod0Hne~ c~opocTH ~ TeMneparypbt, Kacare:u, aoro  Hanp~t- 
~eHHa Ha cten~e H '~Hc:m HyccenbTa. B crate, e, a '~aCtHOCtH, noKaBaHo, ,~ao ~.taccw~ec~a~ TeopHa 

HenpneM:~e.~la npr~ 3Ha~eHnax fl' Hn~e (0,05 ; 0,1)Ec. 


